Silver Nanostar Patterned Substrate for Label-Free Characterization of Breast Cancer Cells based on Surface-Enhanced Raman Spectroscopy

نویسندگان

  • Md. Khaled Hossain
  • Hyeon-Yeol Cho
  • Kyeong-Jun Kim
  • Jeong-Woo Choi
چکیده

Characterization of cancer cells is important in case of personalized cancer therapy. Cells can be characterized based on their surface marker expression level using fluorescence or surface-enhanced Raman spectroscopy (SERS) method, but in both cases its needed additional labeling with fluorescent or Raman dyes, those may cause cellular cytotoxicity. In this study, we report silver (Ag) nanostar pattern modified ITO substrate capable of label free characterization of breast cancer cells based on SERS. The substrate was fabricated by depositing homogeneously distributed silver nanostar pattern on ITO-glass surface electrochemically. The substrate was capable to produce highly intense SERS spectra in comparison to gold nanopattern modified substrate. Two different subtypes of breast cancer cells (SK-BR-3 and MCF-7) were immobilized on the substrate separately and successfully distinguished based on the molecular information detected by SERS. Our newly developed substrate can be used as an effective platform for molecular detection and characterization of different cells originated from same or different organs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Unification of Surface Enhanced Raman Spectroscopy of Dyes Using One Pot Synthesized Stabilized Ag Nanoparticles

stabilized Ag Nanoparticles (NPs) were synthesized using Lee-Meisel method under three different conditions in an oil bath. UV-Vis spectroscopy of the Ag NPs showed a Localized Surface Plasmon (LSP) band around 430 nm, indicating Ag NPs had a size range around 40 nm. To fabricate a surface Enhanced Raman Spectroscopy (SERS) substrate, LSP properties of Ag NPs was employed with the goal of detec...

متن کامل

Characterization and DFT Studies for Green Synthesis of Silver Nanoparticles by Morphine Ampules and their Anti-proliferation Activity

This study is a green approach for the synthesis of silver nanoparticles (AgNPs) using morphine ampoules (MO) as reducing and capping agents. The toxicity effects of prepared particles were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on breast cancer cells. The spherical AgNPs with the average size of 50nm were synthesized and studied by UV–visible s...

متن کامل

Label-free mapping of single bacterial cells using surface-enhanced Raman spectroscopy.

Here we presented a simple, rapid and label-free surface-enhanced Raman spectroscopy (SERS) based mapping method for the detection and discrimination of Salmonella enterica and Escherichia coli on silver dendrites. The sample preparation was first optimized to maximize sensitivity. The mapping method was then used to scan through the bacterial cells adsorbed on the surface of silver dendrites. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015